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We study the behavior of a collapsible tube conveying a fluid subject to external pressure that
could occur in many physiological applications. The method of rotating spines is developed
to enable an automatic mesh adaptation when the tube is deformed largely. We examine
bifurcation diagrams when the tube is collapsed under a pressure driven condition and reveal
that multiple solutions exist for a range of the Reynolds number. The stability characteristic
of the system is discovered by determining stability of these solutions by the eigenvalue
method for the first time, which is validated by solving a time-dependent problem of the
system.
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1. Introduction

The flow in collapsible tubes has been widely studied for its numerous applications to physi-
ology and medical devices in the last few decades. An intriguing feature of this system is the
flow-induced self-excited oscillation. Physiological examples include respiratory wheezes during
forced expiration, cervical venous hum arising through oscillations of the external jugular vein,
generation of snoring noises, the Korotkoff sounds heard when the blood pressure is measured
by applying an external force on an artery. We refer readers to (Heil and Jensen, 2003; Grotberg
and Jensen, 2004) for a more detailed discussion of physiological applications of collapsible tube
flows.
Self-excited oscillations are frequently observed in a laboratory in the “Starling resistor”.

Early experiments on collapsible tubes tended to investigate classification of different oscillations,
influence of different system parameters on the oscillation and analyzed pressure, flow rate
and tube cross-sectional area time records in many test cases (Bertram, 2003). However, flow
characteristics within the tube when it is in a state of self-oscillation are lacking. This is because
invasive experimental techniques measuring pressure and velocity have a great effect on the
flow field. Much recent experimental work has concentrated on visualization of the flow fields
using high speed particle image velocimetry. The time-varying flow field just downstream of an
oscillating collapsible tube was measured by Bertram et al. (2008). Truong and Bertram (2009)
measured the flow-field immediately downstream of a collapsible tube during oscillation onset
starting from the collapsed state and identified the areas of the flow where oscillation initially
occurred. The velocity fields in the flexible tube when it is on the verge of the self-oscillation
state and is in the state of periodic self-oscillation has been measured (Yiasemides et al., 2017).
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To understand the mechanisms of self-excited oscillations of the system observed, many re-
searchers use a two-dimensional channel in which a part of one of the sidewalls is replaced by a
pre-stressed elastic membrane or a tube. When the prestress is small, the viscous pressure drop
along the channel induces large-amplitude and low-frequency self-excited oscillations. Luo et al.
(2008) analyzed the system linear stability in the absence of prestress and discovered a “cascade”
stability structure for the flow-driven boundary condition (the fluid velocity is imposed at the
inlet). Liu et al. (2012) found different oscillation modes when the system was pressure-driven
(the fluid press was imposed at the inlet). Jensen and Heil (2003) employed asymptotic tech-
niques to derive explicit predictions for stability boundaries for small-amplitude, high-frequency,
self-excited oscillations in the limit of large membrane tension and identified a simple slosh-
ing mechanism for self-excited oscillations. In three dimensions, Heil and Boyle (2010) found
the sloshing mechanism which explained the development of self-excited oscillation in initially
axisymmetric (or weakly buckled) three-dimensional collapsible tubes. Zhang et al. (2018) ex-
amined bifurcation diagrams for different collapse models in the velocity driven condition and
revealed that multiple solutions exist in some range of the Reynolds number. Although Whit-
taker et al. (2010) predicted the onset of high-frequency self-excited oscillations by considering
energy budget of the system, and analyzed stability of the system by direct numerical simulation
which had not been done before.

In this paper, we investigate a flow-tube system in the pressure driven condition based on
the model developed by Zhang et al. (2018). An outline of the paper is as follows. In Sec-
tion 2, we introduce the model briefly. In Section 3, several methods are introduced to solve
the problem including the finite element method and the eigenvalue method. In the finite ele-
ment method, improved three-dimensional rotating spines are used to update the adaptive mesh
deformation. In Section 4, the steady flow-tube system is solved under different pressures in a
range of Reynolds numbers in the pressure driven condition, and the system buckling behavior
is studied for different Reynolds numbers. The stability of some solutions is also identified by
the eigenvalue method which is validated by solving the transient solution of the system. In
Section 5, conclusions are included and some further researches are discussed.

2. The fluid-tube model

2.1. Model description

The model consists of a flow in a three-dimensional collapsible tube whose cross section is
cylindrical initially. The tube has a thickness h∗, length L∗ and inner diameter D∗. We divide
the tube into the upstream part, middle part and downstream part with the length L∗u, L

∗

m

and L∗d, respectively. The upstream and downstream parts are rigid and the middle part which
is subjected to an external pressure P ∗ext and is assumed to be collapsible as shown in Fig. 1.
The tube is described by a neo-Hookean material with the density ρ∗e and shear modulus µ

∗

e.
The fluid is an incompressible Newtonian fluid whose density is ρ∗ and viscosity is µ∗. The flow
is assumed to be laminar and the average flow velocity of the tube is U∗0 .

2.2. The governing equations

The governing equations are built by the ALE method. The fluid governing equations are
built in the Eulerian coordinate system with the position vector x, and the solid governing
equations are built in two Lagrangian coordinate systems using xe and Xe, respectively. xe is
the position vector in the current configuration and Xe is the position vector in the reference
configuration.
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Fig. 1. Geometry of the collapsible tube

For convenience, we adopt dimensionless variables and parameters defined as follows,
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(2.1)

where the quantities with a star are dimensional ones. vi, xi (i = 1, 2, 3) are velocity and
coordinate components of the fluid, ui (i = 1, 2, 3) are displacement components of the structure,
and xei, Xei (i = 1, 2, 3) are coordinate components of the structure in the current and reference
configuration, respectively. P is the fluid pressure, Re is the Reynolds number.

The dimensionless governing equations for the coupled fluid-structure interaction system are

∂vi
∂t
+ vj

∂vi
∂xj
= −

∂p

∂xi
+
1

Re
∇
2vi

∂vi
∂xi
= 0 detF = 1

µeFiA,A − peF
−1
Ai,A = ρeui,tt i, j, A = 1, 2, 3

(2.2)

where F is the deformation gradient.

2.3. The boundary conditions

We impose the following boundary conditions:

1) Parallel, axially traction-free inlet flow (z = 0): v1 = v2 = P = 0.

2) Zero velocity at the rigid walls (r = R, 0 ¬ z ¬ Lu, Lu + Lm ¬ z ¬ L): vi = 0, i = 1, 2, 3.

3) Parallel flow with the required flow rate at the outflow (z = L): v1 = v2 = 0;
∫
v3 dA = π/4.

4) Clamped ends of the elastic tube (z = Lu, Lu + Lm): ui = 0, u̇i(t) = 0, i = 1, 2, 3.

5) No slip condition at the interface (Lu ¬ z ¬ Lu + Lm, r = R): vi(t) = u̇i(t), i = 1, 2, 3.

6) External pressure on the outer wall of the tube: σ × n = −Pextn, where n is the outward
normal vector of the tube.
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3. The numerical method

3.1. The adapting mesh

The finite-element method is adopted to solve the coupled nonlinear fluid-structure interac-
tive equations simultaneously, and the method of rotating spines is used to enable an automatic
mesh adaptation. To construct the adapting mesh, we once divided the fluid field in the elastic
section into internal and external regions by a virtual cylindrical shell. The nodes within the
cylindrical shell are fixed, and these outside the shell are movable. The spines are originating
from the virtual cylindrical shell. The deformed by this method mesh is shown in Fig. 2. It can
be seen when the deformation is large, the mesh in the internal section is denser than the mesh
in the external section. It goes against the law that density of the mesh towards the wall should
be increased to resolve the boundary layer near the tube wall.

Fig. 2. The deformed mesh by the prior method

Fig. 3. A sketch of the moving rotating spines

We improve the method by cancelling the cylindrical shell and the spines originating from
the center line of the tube. This method is illustrated on a circular cross section as shown in
Fig. 3. The spines are straight lines which can rotate around the fixed node in the center. For
example, (xkj (0), y

k
j (0), z

k
j (0)) are the initial coordinates of the (fluid) node j on the spine k

which is connecting the fixed node O(0, 0, zb) in the center to the material point (X
k
e , Y

k
e , Z

k
e )

on the tube wall. After deformation, (Xke , Y
k
e , Z

k
e ) moves to (x

k
e(t), y

k
e (t), z

k
e (t)) according to

xke(t) = X
k
e + ue(t) yke (t) = Y

k
e + ve(t) zke (t) = Z

k
e + we(t) (3.1)

where (ue, ve, we) are the corresponding displacements. The node (x
k
j (0), y

k
j (0), z

k
j (0)) on the

spine k moves along it according to

xkj (t) = ω
k
j x
k
e(t) ykj (t) = ω

k
j y
k
e (t) zkj (t) = z

k
b + ω

k
j (z
k
e (t)− zb) (3.2)
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where j = 1, 2, 3, . . . , nk, nk is the total number of nodes on the spine k, and ω
k
j are the fixed

scaling factors defined by

ωkj =

√
(xkj (0))

2 + (ykj (0))
2 + (zkj (0) − zb)

2

√
(Xke )

2 + (Y ke )
2 + (Zke − zb)

2
(3.3)

After we obtain the coordinates of the nodes on the rotating spines, those which are not placed
on the rotating lines are linearly interpolated from those on the rotating spines. The deformed
mesh by the new method is shown in Fig. 4.

Fig. 4. The deformed mesh by the new method

3.2. Fully coupled finite-element equations

When solving the time-dependent problem, the time derivatives in the finite element equa-
tions need to be replaced by the finite time difference terms. In the solid equations, the accel-
eration term is expressed by the second-order partial derivative of displacement with respect
to time. But it is expressed by the one-order partial derivative of velocity with respect to time
in the fluid equations. In order to adopt the same time difference scheme to approximate the
acceleration term, we unify the order of partial derivative with respect to time by adding the
variables of solid velocity. The relationship between velocities of the solid and its displacements
is

ui,t = αi i = 1, 2, 3 (3.4)

where αi is the solid velocity in the x, y, z directions.
We employ the Petrov-Galerkin method to discretize governing equations (2.2). To make the

order of each item in the discretization equations be the same, the element type for the flow
is a 15 node triangular prism with quadratic shape functions ψ for velocities and linear shape
functions ϕ for fluid pressure. The element type for the solid is a 20 node hexahedron with
quadratic shape functions ψe for displacements, solid velocities and linear shape functions ϕe

for the solid ‘pressure’.
Coupled governing equations (2.2) when they are discretized and assembled, can be written

in a matrix form as

M
dU

dt
+K(U)U − F′ = R = 0 (3.5)

where U = [uj , vj , wj , pj , uej , vej, wej , pej, αxj , αyj , αzj]
T is the global vector of unknowns, j is

the number of degrees of freedom for each variable. M, K are the n × n mass and stiffness
matrices, respectively. F′ and R is a force-like vector and residual vector with dimension n,
respectively. n is the total number of degrees of freedom. R is denoted by

R = [Ru, Rv , Rw, Rp, Rue , Rve , Rwe , Rpe , Rαx , Rαy , Rαz ]
T (3.6)

where the subscripts u, v, w, p indicate the corresponding residuals of flow momentum equations
in the x, y, z directions and continuity equation, respectively. Subscripts ue, ve, we, pe indicate
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the corresponding residuals of solid momentum equations and the incompressible equation. Sub-
scripts αx, αy, αz indicate the corresponding residuals of equation (3.4).

When we consider the quasi-static wall and steady flows only, the terms related to time
disappear. The coupled governing equations become

K(U)U − F′ = R = 0 (3.7)

where U = [uj, vj , wj , pj , uej , vej, wej , pej ]
T is the global vector of unknowns.

3.3. The stability analysis

The system shows different unsteady behavior under different parameters. To study stability
of the system, there are usually two methods. One is solving the eigenvalue problem of the system,
the other is solving the time-dependent problem of the system. The similarity between the two
methods is that the steady solution denoted by U is obtained for a given set of parameters first.
The steady solution satisfies the equation

KUU− F′ = 0 (3.8)

which is solved by the frontal method and the Newton Raphson scheme.

For the method of solving the time-dependent problem, a slightly different steady solution
is used as the initial guess which has a parameter value of Pext, say, 1% away from that of the
steady solution in question. An implicit finite-difference second order predictor corrector scheme
with a variable time step is used to deal with time derivatives (Gresho et al., 1980). After doing
this, the time-dependent problem can be solved as the steady problem at each time step. If as
time progresses, the time-dependent solution converges to the corresponding steady solution,
then the system is stable under the set of parameters. If the time-dependent solution diverges
away from the steady solution or oscillates with time, it is deemed to be unstable. The critical
point at which the system becomes unstable is called the neutrally stable point.

When solving the eigenvalue problem of the system, an infinitesimal perturbation denoted
by ∆U is applied to the steady solution. The perturbation can be written as ∆U = exp(ωt)(U),
where ω = (ωR + iωI) and U = (UR + iUI) are the complex eigenvalues and eigenvectors,
respectively. The solution of the system can be expressed asU = U+∆U. We then substitute this
formula into discretized matrix equation (3.5). By using of the Taylor expansion and equation
(3.8), we obtain a generalized eigenvalue problem

ωMŨ+KŨ = 0 (3.9)

where M = M(U) and K = K(U) + ∇UK(U)
∣∣
U
U. They can be determined

by the steady solution U. The above eigenvalue problem is then solved using the
ARPACK(https://www.caam.rice.edu/software) software. The Arnold-frontal method employ-
ing a frontal method during along with the Arnold iteration scheme is used, for details see (Hao
et al., 2016). The advantage of this method is that it just needs to solve the leading few eigenval-
ues of the discretized system and it does not need to form large matrices M and K in equation
(3.9). The stability of the system is decided by the signs of ωR. If ωR is positive, the system is
unstable and if ωR is negative, the system is stable. ωR = 0 indicates the system is at a neutral
stable point, which is associated with sustained self-excited oscillations.

The eigenvalue method is adopted in the paper to study stability of the system. It is more
effective than the method of solving the time-dependent problem which is used as the validation
method of the eigenvalue approach.



A fully-coupled three-dimensional fluid-structure interaction study... 401

4. Results

4.1. The bifurcation diagrams

We study the changes of the system buckling behavior due to changes in the flow rate or the
Reynolds number under different external pressures. The geometrical parameters of the model
are as follows

D∗ = 0.004m Lu = 0.5 Lm = 10.0 Ld = 4.0 h = 0.025

The results are presented in terms of the dimensional shear modulus and pressure, i.e.
µ∗e = 612000.0 Pa, external pressures µ

∗

e = 19.36 Pa, 19.39 Pa, 19.48 Pa and a pressure drop dp
∗

across the tube between z = 0 and 14.5.

The Reynolds numbers are varied from 40 to 210, the relationship between the Reynolds
number and the pressure drop dp∗ is shown in Fig. 5 for different values of the external pressure.
The straight lines are obtained for axisymmetric deformation, and these remain almost the same
under different external pressures. Because the cross-section of the tube keeps to be circular for
axisymmetric deformation and the deformation is also small. In this condition, the pressure drop
can be obtained by the following formula

dp∗ =
32L∗µ∗2

ρ∗D∗3
Re (4.1)

Fig. 5. The relation between Re and dp∗ under different external pressures

It is linear with the Reynolds number. The other lines are obtained when the tube is collapsed.
The number of pressure drops is equal to the number of solutions of the system. Take the
external pressures P ∗ext = 19.36 Pa as an example, when the Reynolds number is small, just
one axisymmetric solution exists. As Re increases to Re > 89, there are two solutions: one
axisymmetric and one buckling. This trend is the same for P ∗ext = 19.39 Pa and 19.48 Pa except
for the critical Re = 82 and 49, respectively. It can be seen that the critical Reynolds number
is decreased as the external pressure increases. Because the tube buckles when the transport
pressure (the external pressure minus the internal pressure) exceeds the critical buckling value.
When the inlet pressure is imposed, the large external pressure may make the transport pressure
arrive at the critical buckling value when the Reynolds number is small according to Eq. (4.1).
In the pressure driven boundary condition, the number of solutions is much different with that
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under the flow-driven boundary condition in which the system may have one axisymmetric
solution, one axisymmetric solution with one buckling solution or two buckling solutions.
To analyse the tube deformation under different Reynolds numbers, we choose point P2 and

point Q2 which is the intersection point of cut1 and cut2 with the cross section at z−Lu = 5.0,
respectively, as the characteristic point shown in Fig. 6a. We can also plot a bifurcation diagram
in terms of tube deformation and Re by these two points as shown in Fig. 6b. The vertical
axis shows the difference of r0 and r, where r0 is radius of the tube and r is the distance
between the characteristic point and the center of the cross section after deformation. The three
overlapped straight lines are obtained when the tube is deformed symmetrically. The lines above
the straight lines indicate the wall bulged out at point P2, and the blow ones indicate the wall
collapse at point Q2. We take P

∗

ext = 19.48 Pa as an example to show the tube deformation
when Re increases. When Re is less than the critical Re, which is 49 in this situation, the tube
deformation is symmetrical and small, and increases slowly as Re increases. At the critical point,
the tube may buckle and the symmetrical deformation disappears. The deformation of the tube
will increase rapidly as Re increases if it is on the buckling branch.

Fig. 6. (a) The sketch of the positions of characteristic points and (b) the buckling curves of the
characteristic points under different external pressures

4.2. Stability analysis of the system

We investigate stability of the steady solutions obtained in Section 4.1 by the eigenvalue
method described in Section 3.3. The axisymmetric deformation of the tube is small and the
most likely to occur. So, the steady solution when the tube is axisymmetric is stable normally,
we also validate this in some cases. We focus the attention on the buckling solutions next.
The eigenvalues of the stability problem of buckling solutions with different Re under three

different external pressures when the system is in pressure driven condition are shown in Table 1.
It shows that as the external pressure increases, the real part of the eigenvalue becomes smaller
and smaller at the same Re. Take Re = 180 as an example, when P ∗ext = 19.39 Pa, then the real
part of the eigenvalue is 0.0096. As the external pressure increases to 19.39 Pa and 19.48 Pa, the
real part of the eigenvalue decreases to 0.0086 and −0.00050, respectively. The stability of the
steady solution becomes unstable from stable. It can be inferred that with an increase of external
pressure, the buckling solution changes from an unstable solution to a stable one when other
parameters remain unchanged. The table also shows that the real part of the eigenvalue becomes
larger and larger with an increase of Re at the same external pressure. Take P ∗ext = 19.36 Pa as
an example, when Re = 125, the real part of the eigenvalue is −0.014. As the Re increases to
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150 and 163, the real part of the eigenvalue increases to −0.000203 and 0.0057, respectively. It
can be observed that there is a critical Re where the real part of the eigenvalue is zero between
the 150 and 163. The buckling solution with the Re below the critical Re is stable, and above
the critical Re is unstable. At external pressure P ∗ext = 19.39 Pa, the critical Re is between 150
and 163. When the external pressure P ∗ext = 19.48 Pa, it can be considered that the critical Re
is 200. Although the real part of the eigenvalue is not exactly equal to zero, considering the error
of the numerical method, the real part of the eigenvalue can be approximated to zero.

Table 1. Eigenvalues of stability problem of buckling solutions with different Re under three
different external pressures when the system is in the pressure driven condition

Re
P ∗ext = 19.36 Pa P ∗ext = 19.39 Pa P ∗ext = 19.48 Pa
Real Imaginary Real Imaginary Real Imaginary

125 −0.014 0.625 −0.018 0.676 −0.024 0.714

150 −0.000203 0.582 −0.00201 0.584 −0.00816 0.634

163 0.0057 0.524 0.0035 0.542 −0.00502 0.583

180 0.0096 0.486 0.0086 0.487 −0.00050 0.524

200 0.0119 0.436 0.0099 0.446 0.000091 0.476

4.3. Validation of stability of the system

In this Section, the stability of the steady-state solution is determined by solving the transient
solution of the system, and the results are compared with those obtained by the eigenvalue
method in Section 4.2.

Fig. 7. The displacement of point C in the perturbation direction: (a) position of point C,
(b) magnitude of displacement

The initial conditions of the transient solution are obtained by perturbing the external pres-
sure of the steady solution. In the specific implementation, the displacement of point C on the
disturbed tube, and the steady solution after the disturbance is calculated by the displacement
control method as the initial gauss of the transient solution. In this way, one can avoid a too
large external pressure disturbance, which leads to too large deformation of the tube and does
not meet the conditions as the initial gauss of the transient solution. Point C is located at the
middle of the tube collapsible section, and its coordinates are (x = R+h, y = 0, z = Lu+0.5Lm),
as shown in Fig. 7a. The point C is disturbed in the x direction and its displacement is Rc, as
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shown in Fig. 7b. The solid line and dotted line represent the shape of the cross section at
point C before and after deformation, respectively.

We will solving the transient solution of the system in three different conditions. In the first
condition, Re is 150 and the external pressure P ∗ext is changed from 19.48 Pa to 19.49 Pa when the
displacement of point C in the perturbation direction Rc is disturbed from −0.15 to −0.1625.
In seeking the transient solution of the system, we set the external pressure P ∗ext = 19.48 Pa
and take the steady solution of the system when P ∗ext = 19.49 Pa as the initial condition of the
transient solution. In the steady buckling solution under external pressure P ∗ext = 19.48 Pa, the
coordinate of point C is (x = 0.37500, y = 0.00000, z = 5.50021) whose abscissa is shown by
the red line in Fig. 8a. The black line in Fig. 8a shows the time varying curve of the abscissa
of point C in the transient solution. It can be seen that the abscissa of point C vibrates with
the position of the steady solution as the balance point. Since the energy entering the system is
less than the energy dissipated in the flow field, the amplitude of vibration gradually decreases.
The amplitude of the first cycle is 0.01220 and the amplitude of the last cycle is 0.00110, which
is less than one tenth of that of the first cycle. It can be inferred that as time goes on, the
abscissa of point C will tend to the abscissa value of the steady solution when the external
pressure P ∗ext = 19.48 Pa, that is, 0.37500. Therefore, the steady solution is stable under this
parameter, which is consistent with the conclusion obtained by solving the eigenvalue of the
stability problem of the steady solution in Section 4.2.

Fig. 8. The time-dependent curves of x coordinate of point C in the pressure driven condition when
P ∗
ext
= 19.48Pa as described by the black lines, and the red lines show the x coordinate of point C in

the steady buckling solution: (a) Re = 150, (b) Re = 200

In the second condition, Re is 200 and the external pressure P ∗ext is changed from 19.48 Pa
to 19.49 Pa when the displacement of point C in the perturbation direction Rc is disturbed from
−0.198 to −0.2020. In seeking the transient solution of the system, we set the external pressure
P ∗ext = 19.48 Pa and take the steady solution of the system when P

∗

ext = 19.49 Pa as the initial
condition of the transient solution. The black line in Fig. 8b shows the change of the abscissa of
the point C of the transient solution when P ∗ext = 19.48 Pa where the red line (x = 0.32700) is
the abscissa of the point C of the steady solution. It can be seen that the abscissa of point C
vibrates with the red line and the amplitude remains unchanged over time. The system is in a
critical state between stable and unstable, which is consistent with the conclusion obtained by
solving the eigenvalue of the stability problem of the steady solution in Section 4.2.

In the third condition, Re is 200 and the displacement of point C is perturbed from −0.172
to −0.179 where the external pressure is changed from P ∗ext = 19.36 Pa to P

∗

ext = 19.39 Pa. Take
the steady solution under P ∗ext = 19.39 Pa as the initial guess to solve the transmit solution
under P ∗ext = 19.36 Pa. As shown in Fig. 9, the black line in the figure is a time varying curve



A fully-coupled three-dimensional fluid-structure interaction study... 405

of the abscissa of point C in the transient solution, and the red line (x = 0.353) is the abscissa
of point C in the steady solution. The abscissa of point C vibrates with the red line and the
amplitude is increasing with time. So, the steady solution is unstable and the conclusion is also
the same as that in Section 4.2.

Fig. 9. The time-dependent curve of x coordinate of point C in the pressure driven condition when
P ∗
ext
= 19.36Pa, Re = 200 as described by the black line, and the red line shows the x coordinate of

point C in the steady buckling solution

It can been seen that determining stability of the steady solution by solving the transient
solution derives the same conclusion with the eigenvalue method. In practical calculation, the
time consumed by solving the transient solution is ten or tens times more than that in the
eigenvalue method. It shows the effectiveness of the eigenvalue method.

5. Conclusion

We have carried out an extensive study on three-dimensional flows in a hyper-elastic collapsible
tube in a pressure-driven condition. The rotating spines method is developed to solve the coupled
fluid structure interaction problem when the tube is greatly collapsed. We found that there exists
a range of Reynolds numbers when two solutions exist at the same external pressure, with one
non-buckling and one buckling scenarios (Fig. 6b). This type of bifurcation diagrams for the tube
buckling has not been reported before and it is very different to that in the flow-driven boundary
condition (Truong and Bertram, 2009). It is the first time to determine stability of the steady
solution by the eigenvalue method and the solution may be stable, unstable or in a critical state
between stable and unstable in some range of Reynolds numbers. The transient solutions of the
system are obtained to validate the effectiveness of the eigenvalue method to determine stability
of the steady solution. By changing the core parameters of the system (Reynolds number and
elastic modulus of the tube), the stability parameter space of the system with respect to the
Reynolds number and elastic modulus can be determined. Analysis of the rule between system
stability and its parameters, one can provide a reference for stugy of the mechanism of self-
-excited vibration. It also provides theoretical support for design and manufacture of auxiliary
vocal devices and snoring control equipment.
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